Indicators

When an acid is dissolved in water we get an acidic solution. When a base dissolves in water it is an alkali and makes an alkaline solution. If a solution is neither acidic nor alkaline it is neutral. Pure water is neutral, and so is paraffin.
Indicators are substances that change colour when they are added to acidic or alkaline solutions. Litmus, phenolphthalein, and methyl orange are all indicators that are commonly used in the laboratory.

Litmus

Litmus indicator solution turns red in acidic solutions, blue in alkaline solutions, and purple in neutral solutions.
Litmus paper comes as red litmus paper and blue litmus paper. The table shows the colour changes it can make:

Red Litmus
Stays red
Stays red
Turns blue

Blue Litmus
Turns red
Stays blue
Stays blue

Acids turn blue litmus paper red

Alkalis turn red litmus paper blue

Other indicators

The table shows the colour of methyl orange and phenolphthalein in solutions of different pH :

| Indicator | Acidic | Neutral | Alkaline |
| :--- | :--- | :--- | :--- | :--- |
| Methyl orange | Red | Yellow | Yellow |
| Phenolphthalein | Colourless | Colourless | Pink |

The pH scale

The chemical properties of many solutions enable them to be divided into three categories-acidic, alkaline and neutral solutions.
The pH scale is used to measure acidity and alkalinity:

- solutions with a pH less than 7 are acidic
- solutions with a pH of 7 are neutral
- solutions with a pH greater than 7 are alkaline

If universal indicator is added to a solution it changes to a colour that shows the pH of the solution. Universal indicator is a mixture of a variety of other indicators and can be used to measure the approximate pH of a solution. A more accurate value can be obtained using a pH probe.

pH scale and universal indicator colours

Acids and alkalis

When atoms or groups of atoms lose or gain electrons, charged particles called ions are formed. Ions can be either positively or negatively charged.

Acids

When acids dissolve in water they produce hydrogen ions, H^{+}. These are sometimes called protons, because hydrogen ions are the same as a hydrogen nucleus (which is a proton).
For example, take a look at the equation for hydrochloric acid:
$\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}(\mathrm{aq})$
Note that (aq) means the substance is in solution.
Acids are often produced from non-metal oxides. For example, sulfur oxides make sulfuric acid.

Alkalis

When alkalis dissolve in water they produce hydroxide ions, OH^{-}.
For example, take a look at the equation for sodium hydroxide:
$\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
Ammonia is slightly different. This is the equation for ammonia in solution:
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Bases

A base is chemically opposite to an acid. Some bases dissolve in water and are called alkalis. But other bases, including many metal oxides, do not dissolve in water.

Neutralisation reaction

When the H^{+}ions from an acid react with the OH^{-}ions from an alkali, a neutralisation reaction occurs to form water. This is the equation for the reaction: $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
For example, hydrochloric acid and sodium hydroxide solution react together to form water and sodium chloride solution. The acid contains H^{+}ions and Cl^{-}ions, and the alkali contains Na^{+}ions and OH^{-}ions. The H^{+}ions and OH^{-}ions produce the water, and the Na^{+}ions and Cl -ions produce the sodium chloride, $\mathrm{NaCl}(\mathrm{aq})$.
Because neutralisation reactions involve the loss and gain of hydrogen ions, this process is sometimes referred to as 'proton transfer'.

Reactions with acids
Acids and reactive metals
Acids will react with reactive metals, such as magnesium and zinc, to make a salt and hydrogen:
acid + metal \rightarrow salt + hydrogen
hydrochloric acid + zinc \rightarrow zinc chloride + hydrogen
The hydrogen causes bubbling during the reaction, and can be detected using a burning splint which produces a squeaky pop sound.

Acids and metal oxides

When acids react with metal oxides, a salt and water are made:
acid + metal oxide \rightarrow salt + water
nitric acid + magnesium oxide \rightarrow magnesium nitrate + water

Acids and metal carbonates

When acids react with carbonates, such as calcium carbonate (found in chalk, limestone and marble), a salt, water and carbon dioxide are made. In general:
acid + metal carbonate \rightarrow salt + water + carbon dioxide
sulfuric acid + iron \rightarrow iron sulfate + water + carbon dioxide
The carbon dioxide causes bubbling during the reaction. It can be detected by passing the gas through limewater, which will go cloudy.

