Indicators

When an **acid** is dissolved in water we get an **acidic** solution. When a **base** dissolves in water it is an **alkali** and makes an **alkaline** solution. If a solution is neither acidic nor alkaline it is **neutral**. Pure water is neutral, and so is **paraffin**.

Indicators are substances that change colour when they are added to acidic or alkaline solutions. Litmus, phenolphthalein, and methyl orange are all indicators that are commonly used in the laboratory.

Litmus

Litmus indicator solution turns red in acidic solutions, blue in alkaline solutions, and purple in neutral solutions.

Litmus paper comes as red litmus paper and blue litmus paper. The table shows the colour changes it can make:

	Red Litmus	Blue Litmus
Acidic solution	Stays red	Turns red
Neutral solution	Stays red	Stays blue
Alkaline solution	Turns blue	Stays blue

Acids turn blue litmus paper red

Alkalis turn red litmus paper blue

Other indicators

The table shows the colour of methyl orange and phenolphthalein in solutions of different **pH**:

Indicator	Acidic	Neutral	Alkaline
Methyl orange	Red	Yellow	Yellow
Phenolphthalein	Colourless	Colourless	Pink

The pH scale

The chemical properties of many solutions enable them to be divided into three categories - **acidic**, **alkaline** and **neutral solutions**.

The **<u>pH</u>** scale is used to measure acidity and alkalinity:

- solutions with a pH less than 7 are **acidic**
- solutions with a pH of 7 are **neutral**
- solutions with a pH greater than 7 are **alkaline**

If **universal indicator** is added to a solution it changes to a colour that shows the pH of the solution. Universal indicator is a mixture of a variety of other indicators and can be used to measure the approximate pH of a solution. A more accurate value can be obtained using a pH probe.

pH scale and universal indicator colours

Acids and alkalis

When **atoms** or groups of atoms lose or gain **electrons**, charged particles called **ions** are formed. Ions can be either positively or negatively charged.

Acids

When acids dissolve in water they produce hydrogen ions, H⁺. These are sometimes called **protons**, because hydrogen ions are the same as a hydrogen **nucleus** (which is a proton).

For example, take a look at the equation for hydrochloric acid: $HCl(aq) \rightarrow H^+(aq) + Cl^-(aq)$

Note that (aq) means the substance is in solution.

Acids are often produced from non-metal oxides. For example, sulfur oxides make sulfuric acid.

Alkalis

When alkalis dissolve in water they produce hydroxide ions, OH⁻.

For example, take a look at the equation for sodium hydroxide: $NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)$

```
Ammonia is slightly different. This is the equation for ammonia in solution: NH_3(aq) + H_2O(l) \rightarrow NH_4^+(aq) + OH^-(aq)
```

Bases

A base is chemically opposite to an acid. Some bases dissolve in water and are called alkalis. But other bases, including many metal oxides, do not dissolve in water.

Neutralisation reaction

When the H⁺ ions from an acid react with the OH⁻ ions from an alkali, a neutralisation reaction occurs to form water. This is the equation for the reaction: $H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$

For example, hydrochloric acid and sodium hydroxide solution react together to form water and sodium chloride solution. The acid contains H⁺ ions and Cl⁻ ions, and the alkali contains Na⁺ ions and OH⁻ ions. The H⁺ ions and OH⁻ ions produce the water, and the Na⁺ ions and Cl⁻ions produce the sodium chloride, NaCl(aq).

Because neutralisation reactions involve the loss and gain of hydrogen ions, this process is sometimes referred to as 'proton transfer'.

Reactions with acids

Acids and reactive metals

Acids will react with reactive metals, such as magnesium and zinc, to make a salt and hydrogen:

acid + metal \rightarrow salt + hydrogen

hydrochloric acid + zinc \rightarrow zinc chloride + hydrogen

The hydrogen causes bubbling during the reaction, and can be detected using a burning splint which produces a squeaky pop sound.

Acids and metal oxides

When acids react with metal oxides, a salt and water are made:

```
acid + metal oxide \rightarrow salt + water
```

nitric acid + magnesium oxide \rightarrow magnesium nitrate + water

Acids and metal carbonates

When acids react with carbonates, such as calcium carbonate (found in chalk, limestone and marble), a salt, water and carbon dioxide are made. In general:

acid + metal carbonate \rightarrow salt + water + carbon dioxide

sulfuric acid + iron \rightarrow iron sulfate + water + carbon dioxide

The carbon dioxide causes bubbling during the reaction. It can be detected by passing the gas through limewater, which will go cloudy.