Hess' Law and the Additivity of Heats

Hess' Law: The value of ΔH for any reaction that can be written in steps equals the sum of the values of ΔH for the individual steps.

Method 1: Additivity of Heats

- 1. Identify the target equation and balance it (if not given).
- 2. Identify the individual step equations. These are provided or are found on a Table of Heats of Formation on the back of your Periodic Table.
- 3. Reverse any step equations so that the position of reactants/products matches that of the target equation. If an equation is reversed, also reverse the sign of ΔH for the step equation.
- 4. Multiply the step equations by the appropriate coefficient to match those in the target equation. Also multiply the ΔH by the same coefficient.
- 5. Add up the modified step equations and their ΔH values. The sum of the modified individual step equation should be identical to the target equation.

Example: Determine ΔH for the following reaction:	
methane (g) + oxygen (g)	carbon dioxide (g) + water (g)

Method 2: Summation of Heats

Identify the $\Delta H_{\rm f}$ for each product and reactant and solve using the equation:

$$\Delta H = \Sigma(n\Delta H_f(products)) - \Sigma(n\Delta H_f(reactants))$$

Example: Determine
$$\Delta H$$
 for the following reaction:
ammonia (g) + oxygen (g) \longrightarrow nitrogen dioxide (g) + water (g)
NH₃ (g) + $\frac{7}{4}O_2 \longrightarrow NO_2$ (g) + $\frac{3}{2}H_2O$ (g)