MOLECULAR GEOMETRY AND VSEPR

Name:

Date:

VSEPR Theory: The 3-dimensional arrangement of atoms around any central atom is determined primarily by the repulsions between electrons in the valence shell of the atom.

General Formula	Lewis Structure	Atoms Bonded to Central Atom (X)	Unbonded Electron Pairs (Lone Pairs, E)	Hybridization and Electron Arrangement	Example	Molecular Shape	
						Name	Diagram
AX ₂	X – A – X	2	0	sp Linear	BeH ₂	Linear	H – Be – H
AX_3				sp²	BH_3		
AX ₂ E				sp²	SO ₂		
AX ₄				sp ³	CH₄		
AX ₃ E				sp ³	NH ₃		
AX ₂ E ₂				sp³	H₂O		
AXE ₃				sp³	HCI		

General Formula	Lewis Structure	Atoms Bonded to Central Atom (X)	Unbonded Electron Pairs (Lone Pairs, E)	Hybridization and Electron Arrangement	Example	Molecular Shape	
						Name	Diagram
AX ₅				sp³d	PCl₅		
AX4E				sp³d	SF_4		
AX ₃ E ₂				sp³d	BrF ₃		
AX ₂ E ₃				sp³d	XeF ₂		
AX ₆				sp ³ d ²	SF_6		
AX₅E				sp³d²	BrF₅		
AX ₄ E ₂				sp ³ d ²	XeF₄		

If a molecule consists of a central atom bonded to 2 or more other atoms, the molecular shape can be predicted by:

- 1) Drawing the Lewis structure for the molecule.
- 2) Counting the number of atoms bonded and unbounded electron pairs around the central atom.
- 3) Use Valence Shell Electron Pair Repulsion Theory (VSEPR) to predict the shape.

Double and Triple Bonds and VSEPR:

Double and triple bonds can be considered as one bond when using VSEPR to predict shape.

Shape Key: ***Do not forget to include lone pairs. This key does not show them but you MUST!**

